\(\int \frac {\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx\) [1410]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 509 \[ \int \frac {\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\frac {\sqrt {d} \sqrt {g} \arctan \left (1-\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {d \sin (e+f x)}}\right )}{\sqrt {2} b f}-\frac {\sqrt {d} \sqrt {g} \arctan \left (1+\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {d \sin (e+f x)}}\right )}{\sqrt {2} b f}-\frac {\sqrt {d} \sqrt {g} \log \left (\sqrt {g}+\sqrt {g} \cot (e+f x)-\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{2 \sqrt {2} b f}+\frac {\sqrt {d} \sqrt {g} \log \left (\sqrt {g}+\sqrt {g} \cot (e+f x)+\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{2 \sqrt {2} b f}-\frac {2 \sqrt {2} a d \sqrt {g} \operatorname {EllipticPi}\left (-\frac {\sqrt {-a+b}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {1+\sin (e+f x)}}\right ),-1\right ) \sqrt {\sin (e+f x)}}{b \sqrt {-a+b} \sqrt {a+b} f \sqrt {d \sin (e+f x)}}+\frac {2 \sqrt {2} a d \sqrt {g} \operatorname {EllipticPi}\left (\frac {\sqrt {-a+b}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {1+\sin (e+f x)}}\right ),-1\right ) \sqrt {\sin (e+f x)}}{b \sqrt {-a+b} \sqrt {a+b} f \sqrt {d \sin (e+f x)}} \]

[Out]

-1/2*arctan(-1+2^(1/2)*d^(1/2)*(g*cos(f*x+e))^(1/2)/g^(1/2)/(d*sin(f*x+e))^(1/2))*d^(1/2)*g^(1/2)/b/f*2^(1/2)-
1/2*arctan(1+2^(1/2)*d^(1/2)*(g*cos(f*x+e))^(1/2)/g^(1/2)/(d*sin(f*x+e))^(1/2))*d^(1/2)*g^(1/2)/b/f*2^(1/2)-1/
4*ln(g^(1/2)+cot(f*x+e)*g^(1/2)-2^(1/2)*d^(1/2)*(g*cos(f*x+e))^(1/2)/(d*sin(f*x+e))^(1/2))*d^(1/2)*g^(1/2)/b/f
*2^(1/2)+1/4*ln(g^(1/2)+cot(f*x+e)*g^(1/2)+2^(1/2)*d^(1/2)*(g*cos(f*x+e))^(1/2)/(d*sin(f*x+e))^(1/2))*d^(1/2)*
g^(1/2)/b/f*2^(1/2)-2*a*d*EllipticPi((g*cos(f*x+e))^(1/2)/g^(1/2)/(1+sin(f*x+e))^(1/2),-(-a+b)^(1/2)/(a+b)^(1/
2),I)*2^(1/2)*g^(1/2)*sin(f*x+e)^(1/2)/b/f/(-a+b)^(1/2)/(a+b)^(1/2)/(d*sin(f*x+e))^(1/2)+2*a*d*EllipticPi((g*c
os(f*x+e))^(1/2)/g^(1/2)/(1+sin(f*x+e))^(1/2),(-a+b)^(1/2)/(a+b)^(1/2),I)*2^(1/2)*g^(1/2)*sin(f*x+e)^(1/2)/b/f
/(-a+b)^(1/2)/(a+b)^(1/2)/(d*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 509, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.324, Rules used = {2988, 2655, 303, 1176, 631, 210, 1179, 642, 2985, 2984, 504, 1232} \[ \int \frac {\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=-\frac {2 \sqrt {2} a d \sqrt {g} \sqrt {\sin (e+f x)} \operatorname {EllipticPi}\left (-\frac {\sqrt {b-a}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {\sin (e+f x)+1}}\right ),-1\right )}{b f \sqrt {b-a} \sqrt {a+b} \sqrt {d \sin (e+f x)}}+\frac {2 \sqrt {2} a d \sqrt {g} \sqrt {\sin (e+f x)} \operatorname {EllipticPi}\left (\frac {\sqrt {b-a}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {\sin (e+f x)+1}}\right ),-1\right )}{b f \sqrt {b-a} \sqrt {a+b} \sqrt {d \sin (e+f x)}}+\frac {\sqrt {d} \sqrt {g} \arctan \left (1-\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {d \sin (e+f x)}}\right )}{\sqrt {2} b f}-\frac {\sqrt {d} \sqrt {g} \arctan \left (\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {d \sin (e+f x)}}+1\right )}{\sqrt {2} b f}-\frac {\sqrt {d} \sqrt {g} \log \left (-\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}+\sqrt {g} \cot (e+f x)+\sqrt {g}\right )}{2 \sqrt {2} b f}+\frac {\sqrt {d} \sqrt {g} \log \left (\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}+\sqrt {g} \cot (e+f x)+\sqrt {g}\right )}{2 \sqrt {2} b f} \]

[In]

Int[(Sqrt[g*Cos[e + f*x]]*Sqrt[d*Sin[e + f*x]])/(a + b*Sin[e + f*x]),x]

[Out]

(Sqrt[d]*Sqrt[g]*ArcTan[1 - (Sqrt[2]*Sqrt[d]*Sqrt[g*Cos[e + f*x]])/(Sqrt[g]*Sqrt[d*Sin[e + f*x]])])/(Sqrt[2]*b
*f) - (Sqrt[d]*Sqrt[g]*ArcTan[1 + (Sqrt[2]*Sqrt[d]*Sqrt[g*Cos[e + f*x]])/(Sqrt[g]*Sqrt[d*Sin[e + f*x]])])/(Sqr
t[2]*b*f) - (Sqrt[d]*Sqrt[g]*Log[Sqrt[g] + Sqrt[g]*Cot[e + f*x] - (Sqrt[2]*Sqrt[d]*Sqrt[g*Cos[e + f*x]])/Sqrt[
d*Sin[e + f*x]]])/(2*Sqrt[2]*b*f) + (Sqrt[d]*Sqrt[g]*Log[Sqrt[g] + Sqrt[g]*Cot[e + f*x] + (Sqrt[2]*Sqrt[d]*Sqr
t[g*Cos[e + f*x]])/Sqrt[d*Sin[e + f*x]]])/(2*Sqrt[2]*b*f) - (2*Sqrt[2]*a*d*Sqrt[g]*EllipticPi[-(Sqrt[-a + b]/S
qrt[a + b]), ArcSin[Sqrt[g*Cos[e + f*x]]/(Sqrt[g]*Sqrt[1 + Sin[e + f*x]])], -1]*Sqrt[Sin[e + f*x]])/(b*Sqrt[-a
 + b]*Sqrt[a + b]*f*Sqrt[d*Sin[e + f*x]]) + (2*Sqrt[2]*a*d*Sqrt[g]*EllipticPi[Sqrt[-a + b]/Sqrt[a + b], ArcSin
[Sqrt[g*Cos[e + f*x]]/(Sqrt[g]*Sqrt[1 + Sin[e + f*x]])], -1]*Sqrt[Sin[e + f*x]])/(b*Sqrt[-a + b]*Sqrt[a + b]*f
*Sqrt[d*Sin[e + f*x]])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 504

Int[(x_)^2/(((a_) + (b_.)*(x_)^4)*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s
 = Denominator[Rt[-a/b, 2]]}, Dist[s/(2*b), Int[1/((r + s*x^2)*Sqrt[c + d*x^4]), x], x] - Dist[s/(2*b), Int[1/
((r - s*x^2)*Sqrt[c + d*x^4]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1232

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[
a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rule 2655

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> With[{k = Denomina
tor[m]}, Dist[(-k)*a*(b/f), Subst[Int[x^(k*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Cos[e + f*x])^(1/k)/(b*
Sin[e + f*x])^(1/k)], x]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] && LtQ[m, 1]

Rule 2984

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/(Sqrt[sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]))
, x_Symbol] :> Dist[-4*Sqrt[2]*(g/f), Subst[Int[x^2/(((a + b)*g^2 + (a - b)*x^4)*Sqrt[1 - x^4/g^2]), x], x, Sq
rt[g*Cos[e + f*x]]/Sqrt[1 + Sin[e + f*x]]], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2985

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/(Sqrt[(d_)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x
_)])), x_Symbol] :> Dist[Sqrt[Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]], Int[Sqrt[g*Cos[e + f*x]]/(Sqrt[Sin[e + f*x]]
*(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2988

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1), x], x] - Dist[a*(d/b), Int[(
g*Cos[e + f*x])^p*((d*Sin[e + f*x])^(n - 1)/(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && N
eQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[-1, p, 1] && GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {d \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}} \, dx}{b}-\frac {(a d) \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))} \, dx}{b} \\ & = -\frac {\left (2 d^2 g\right ) \text {Subst}\left (\int \frac {x^2}{g^2+d^2 x^4} \, dx,x,\frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{b f}-\frac {\left (a d \sqrt {\sin (e+f x)}\right ) \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {\sin (e+f x)} (a+b \sin (e+f x))} \, dx}{b \sqrt {d \sin (e+f x)}} \\ & = \frac {(d g) \text {Subst}\left (\int \frac {g-d x^2}{g^2+d^2 x^4} \, dx,x,\frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{b f}-\frac {(d g) \text {Subst}\left (\int \frac {g+d x^2}{g^2+d^2 x^4} \, dx,x,\frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{b f}+\frac {\left (4 \sqrt {2} a d g \sqrt {\sin (e+f x)}\right ) \text {Subst}\left (\int \frac {x^2}{\left ((a+b) g^2+(a-b) x^4\right ) \sqrt {1-\frac {x^4}{g^2}}} \, dx,x,\frac {\sqrt {g \cos (e+f x)}}{\sqrt {1+\sin (e+f x)}}\right )}{b f \sqrt {d \sin (e+f x)}} \\ & = -\frac {\left (\sqrt {d} \sqrt {g}\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {g}}{\sqrt {d}}+2 x}{-\frac {g}{d}-\frac {\sqrt {2} \sqrt {g} x}{\sqrt {d}}-x^2} \, dx,x,\frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{2 \sqrt {2} b f}-\frac {\left (\sqrt {d} \sqrt {g}\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {g}}{\sqrt {d}}-2 x}{-\frac {g}{d}+\frac {\sqrt {2} \sqrt {g} x}{\sqrt {d}}-x^2} \, dx,x,\frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{2 \sqrt {2} b f}-\frac {g \text {Subst}\left (\int \frac {1}{\frac {g}{d}-\frac {\sqrt {2} \sqrt {g} x}{\sqrt {d}}+x^2} \, dx,x,\frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{2 b f}-\frac {g \text {Subst}\left (\int \frac {1}{\frac {g}{d}+\frac {\sqrt {2} \sqrt {g} x}{\sqrt {d}}+x^2} \, dx,x,\frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{2 b f}+\frac {\left (2 \sqrt {2} a d g \sqrt {\sin (e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\left (\sqrt {a+b} g-\sqrt {-a+b} x^2\right ) \sqrt {1-\frac {x^4}{g^2}}} \, dx,x,\frac {\sqrt {g \cos (e+f x)}}{\sqrt {1+\sin (e+f x)}}\right )}{b \sqrt {-a+b} f \sqrt {d \sin (e+f x)}}-\frac {\left (2 \sqrt {2} a d g \sqrt {\sin (e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\left (\sqrt {a+b} g+\sqrt {-a+b} x^2\right ) \sqrt {1-\frac {x^4}{g^2}}} \, dx,x,\frac {\sqrt {g \cos (e+f x)}}{\sqrt {1+\sin (e+f x)}}\right )}{b \sqrt {-a+b} f \sqrt {d \sin (e+f x)}} \\ & = -\frac {\sqrt {d} \sqrt {g} \log \left (\sqrt {g}+\sqrt {g} \cot (e+f x)-\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{2 \sqrt {2} b f}+\frac {\sqrt {d} \sqrt {g} \log \left (\sqrt {g}+\sqrt {g} \cot (e+f x)+\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{2 \sqrt {2} b f}-\frac {2 \sqrt {2} a d \sqrt {g} \operatorname {EllipticPi}\left (-\frac {\sqrt {-a+b}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {1+\sin (e+f x)}}\right ),-1\right ) \sqrt {\sin (e+f x)}}{b \sqrt {-a+b} \sqrt {a+b} f \sqrt {d \sin (e+f x)}}+\frac {2 \sqrt {2} a d \sqrt {g} \operatorname {EllipticPi}\left (\frac {\sqrt {-a+b}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {1+\sin (e+f x)}}\right ),-1\right ) \sqrt {\sin (e+f x)}}{b \sqrt {-a+b} \sqrt {a+b} f \sqrt {d \sin (e+f x)}}-\frac {\left (\sqrt {d} \sqrt {g}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {d \sin (e+f x)}}\right )}{\sqrt {2} b f}+\frac {\left (\sqrt {d} \sqrt {g}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {d \sin (e+f x)}}\right )}{\sqrt {2} b f} \\ & = \frac {\sqrt {d} \sqrt {g} \arctan \left (1-\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {d \sin (e+f x)}}\right )}{\sqrt {2} b f}-\frac {\sqrt {d} \sqrt {g} \arctan \left (1+\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {d \sin (e+f x)}}\right )}{\sqrt {2} b f}-\frac {\sqrt {d} \sqrt {g} \log \left (\sqrt {g}+\sqrt {g} \cot (e+f x)-\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{2 \sqrt {2} b f}+\frac {\sqrt {d} \sqrt {g} \log \left (\sqrt {g}+\sqrt {g} \cot (e+f x)+\frac {\sqrt {2} \sqrt {d} \sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)}}\right )}{2 \sqrt {2} b f}-\frac {2 \sqrt {2} a d \sqrt {g} \operatorname {EllipticPi}\left (-\frac {\sqrt {-a+b}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {1+\sin (e+f x)}}\right ),-1\right ) \sqrt {\sin (e+f x)}}{b \sqrt {-a+b} \sqrt {a+b} f \sqrt {d \sin (e+f x)}}+\frac {2 \sqrt {2} a d \sqrt {g} \operatorname {EllipticPi}\left (\frac {\sqrt {-a+b}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {1+\sin (e+f x)}}\right ),-1\right ) \sqrt {\sin (e+f x)}}{b \sqrt {-a+b} \sqrt {a+b} f \sqrt {d \sin (e+f x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.25 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.35 \[ \int \frac {\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\frac {2 \left (b \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )-a \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{4},1,\frac {7}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )\right ) (g \cos (e+f x))^{3/2} (d \sin (e+f x))^{3/2} \left (a+b \sqrt {\sin ^2(e+f x)}\right )}{3 \left (a^2-b^2\right ) d f g \sin ^2(e+f x)^{3/4} (a+b \sin (e+f x))} \]

[In]

Integrate[(Sqrt[g*Cos[e + f*x]]*Sqrt[d*Sin[e + f*x]])/(a + b*Sin[e + f*x]),x]

[Out]

(2*(b*AppellF1[3/4, -1/4, 1, 7/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] - a*AppellF1[3/4, 1/4, 1,
 7/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])*(g*Cos[e + f*x])^(3/2)*(d*Sin[e + f*x])^(3/2)*(a + b
*Sqrt[Sin[e + f*x]^2]))/(3*(a^2 - b^2)*d*f*g*(Sin[e + f*x]^2)^(3/4)*(a + b*Sin[e + f*x]))

Maple [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 853 vs. \(2 (393 ) = 786\).

Time = 2.97 (sec) , antiderivative size = 854, normalized size of antiderivative = 1.68

method result size
default \(\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \left (a -b \right ) \left (2 i \sqrt {-a^{2}+b^{2}}\, \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-i \sqrt {-a^{2}+b^{2}}\, \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {a}{-b +\sqrt {-a^{2}+b^{2}}+a}, \frac {\sqrt {2}}{2}\right )-i \sqrt {-a^{2}+b^{2}}\, \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, -\frac {a}{b +\sqrt {-a^{2}+b^{2}}-a}, \frac {\sqrt {2}}{2}\right )+i \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {a}{-b +\sqrt {-a^{2}+b^{2}}+a}, \frac {\sqrt {2}}{2}\right ) a +i \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {a}{-b +\sqrt {-a^{2}+b^{2}}+a}, \frac {\sqrt {2}}{2}\right ) b -i \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, -\frac {a}{b +\sqrt {-a^{2}+b^{2}}-a}, \frac {\sqrt {2}}{2}\right ) a -i \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, -\frac {a}{b +\sqrt {-a^{2}+b^{2}}-a}, \frac {\sqrt {2}}{2}\right ) b -2 \sqrt {-a^{2}+b^{2}}\, \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+\sqrt {-a^{2}+b^{2}}\, \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {a}{-b +\sqrt {-a^{2}+b^{2}}+a}, \frac {\sqrt {2}}{2}\right )+\sqrt {-a^{2}+b^{2}}\, \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, -\frac {a}{b +\sqrt {-a^{2}+b^{2}}-a}, \frac {\sqrt {2}}{2}\right )-\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {a}{-b +\sqrt {-a^{2}+b^{2}}+a}, \frac {\sqrt {2}}{2}\right ) a -\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {a}{-b +\sqrt {-a^{2}+b^{2}}+a}, \frac {\sqrt {2}}{2}\right ) b +\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, -\frac {a}{b +\sqrt {-a^{2}+b^{2}}-a}, \frac {\sqrt {2}}{2}\right ) a +\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, -\frac {a}{b +\sqrt {-a^{2}+b^{2}}-a}, \frac {\sqrt {2}}{2}\right ) b \right ) \sqrt {g \cos \left (f x +e \right )}\, \sqrt {d \sin \left (f x +e \right )}\, \sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}\, \sqrt {-\csc \left (f x +e \right )+\cot \left (f x +e \right )+1}\, \sqrt {-\csc \left (f x +e \right )+\cot \left (f x +e \right )}\, \left (\csc \left (f x +e \right )+\sec \left (f x +e \right ) \csc \left (f x +e \right )\right ) \sqrt {2}\, a}{f b \sqrt {-a^{2}+b^{2}}\, \left (-b +\sqrt {-a^{2}+b^{2}}+a \right ) \left (b +\sqrt {-a^{2}+b^{2}}-a \right )}\) \(854\)

[In]

int((d*sin(f*x+e))^(1/2)*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

(1/2+1/2*I)/f*(a-b)*(2*I*(-a^2+b^2)^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))-I
*(-a^2+b^2)^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))-I*(-a^2+b
^2)^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))+I*EllipticPi((-co
t(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a+I*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^
(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*b-I*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^
(1/2)-a),1/2*2^(1/2))*a-I*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b
-2*(-a^2+b^2)^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))+(-a^2+b^2)^(1/2)*Ellipt
icPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))+(-a^2+b^2)^(1/2)*EllipticPi((-cot
(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2)
,a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a
),1/2*2^(1/2))*b+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a+Elliptic
Pi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b)*(g*cos(f*x+e))^(1/2)*(d*sin(f*x+
e))^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*(cs
c(f*x+e)+sec(f*x+e)*csc(f*x+e))*2^(1/2)*a/b/(-a^2+b^2)^(1/2)/(-b+(-a^2+b^2)^(1/2)+a)/(b+(-a^2+b^2)^(1/2)-a)

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate((d*sin(f*x+e))^(1/2)*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int \frac {\sqrt {d \sin {\left (e + f x \right )}} \sqrt {g \cos {\left (e + f x \right )}}}{a + b \sin {\left (e + f x \right )}}\, dx \]

[In]

integrate((d*sin(f*x+e))**(1/2)*(g*cos(f*x+e))**(1/2)/(a+b*sin(f*x+e)),x)

[Out]

Integral(sqrt(d*sin(e + f*x))*sqrt(g*cos(e + f*x))/(a + b*sin(e + f*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int { \frac {\sqrt {g \cos \left (f x + e\right )} \sqrt {d \sin \left (f x + e\right )}}{b \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((d*sin(f*x+e))^(1/2)*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate(sqrt(g*cos(f*x + e))*sqrt(d*sin(f*x + e))/(b*sin(f*x + e) + a), x)

Giac [F]

\[ \int \frac {\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int { \frac {\sqrt {g \cos \left (f x + e\right )} \sqrt {d \sin \left (f x + e\right )}}{b \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((d*sin(f*x+e))^(1/2)*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate(sqrt(g*cos(f*x + e))*sqrt(d*sin(f*x + e))/(b*sin(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int \frac {\sqrt {g\,\cos \left (e+f\,x\right )}\,\sqrt {d\,\sin \left (e+f\,x\right )}}{a+b\,\sin \left (e+f\,x\right )} \,d x \]

[In]

int(((g*cos(e + f*x))^(1/2)*(d*sin(e + f*x))^(1/2))/(a + b*sin(e + f*x)),x)

[Out]

int(((g*cos(e + f*x))^(1/2)*(d*sin(e + f*x))^(1/2))/(a + b*sin(e + f*x)), x)